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Abstract

The trace of the fabric tensor in static, isotropic, two-dimensional, frictionless, polydisperse granular materials is

examined theoretically and numerically. In the monodisperse case, the trace of the fabric tensor equals the product of

volume fraction and coordination number––thus the fabrics trace can be seen as contact density. For various size

distributions, we obtain a correction factor to the monodisperse observation, which involves the first three moments of

the particle size distribution function. The theoretical prediction is found to be in good agreement with numerical

simulations of static frictionless systems.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Fabric tensor; Discrete element simulation; Bidisperse and polydisperse size distributions
1. Introduction

Inhomogeneous and anisotropic materials attract still increasing interest, not only in the framework of

classical disordered systems like glasses but also, more recently, in connection to granular materials, see

(Roux et al., 1987; Guyon et al., 1990; Vardoulakis and Sulem, 1995; Jaeger et al., 1996; Wolf and

Grassberger, 1997; Herrmann and Luding, 1998; Vermeer et al., 2001). Disordered materials can be

characterized by frozen-in or quenched disorder, a property that distinguishes them from a crystal, where

long-range order exists, or a simple fluid or gas, where homogeneity and isotropy can often be assumed.
Connected to the structure of disordered materials, and of more general relevance, are concepts like rigidity

percolation, see (Moukarzel, 1996; Jacobs, 1998), or internal variables to describe damage/fracture, see

(Cambou and Sidoroff, 1985; Vardoulakis et al., 1998; Kun and Herrmann, 2000). Research focusses on the

relations between the quantities stress, strain, and fabric, see (Cowin, 1985; Sadegh et al., 1991; Roux et al.,

1991; Darve et al., 1995), and very recently a tremendous interest in homogenization and constitutive laws

in the framework of a micro-macro transition emerged, see (Vermeer et al., 2001; Darve et al., 1995;
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Cambou et al., 1995; Emeriault and Chang, 1997; Cowin, 1998; Kuhl et al., 2000; Ehlers and M€ullersch€on,
2000; Dedecker et al., 2000; Oda and Iwashita, 2000; Bagi, 1996, 1999; Edwards and Grinev, 1999; Ball and

Blumenfeld, 2002; Bagi, 2003). A helpful tool for such studies are discrete element or, with other words,

molecular dynamics simulation techniques, as introduced by Cundall and Strack (1979, 1983), Allen and
Tildesley (1987), and applied to idealized granular materials by Radjai et al. (1999), L€atzel et al. (2000),
Luding et al. (2001a,b), Luding and Herrmann (2001), L€atzel et al. (2001) and Luding (2002a), and many

others.

An essential question is the characterization of disorder and, as a first step, the quantitative prediction of

mean material properties. Straightforward progress is possible when a periodic structure (crystal) is

regarded: one has only to account for one unit cell and global properties can easily be predicted, as done by

Kruyt and Rothenburg (2001), Luding and Herrmann (2001) and Luding (2003, 2004). For disordered

media, the concept of the fabric tensor naturally occurs when the system consists of an elastic network, or a
packing of discrete particles. The fabric tensor is then a zero- and second-order harmonic fit to the

probability distribution function for load-carrying contacts in a given direction.

Various definitions of the fabric tensor exist in the literature, see (Rothenburg and Selvadurai, 1981;

Goddard, 1986; Mehrabadi et al., 1988; Chang, 1988; Thornton and Randall, 1988), including definitions

for elliptical or polygonal particles, see (Sadd et al., 1997; Goddard, 1998), and tensors of higher rank than

two, see (Chang et al., 1995; Jenkins, 1997; Tobita, 1997). The fabric tensor can be related to the anisotropic

material stiffness tensor, see (Bathurst and Rothenburg, 1988; Chang et al., 1995; Kruyt and Rothenburg,

1996; Liao and Chang, 1997; Liao et al., 1997; Bigoni and Loret, 1999; Bagi, 1999), in static, frictionless
assemblies. The isotropic part, i.e. the trace of the fabric is then a measure for the bulk stiffness or com-

pressibility under isotropic strain, see (L€atzel et al., 2000; Luding, 2002a). The fabric is most readily

examined by means of molecular dynamics simulations, as done by Cundall and Strack (1983), Thornton

(1997), Luding (1997), Thornton (2000), Thornton and Antony (2000) and Oda and Iwashita (2000), but

also experiments are available, see for example (Oda et al., 1997; Dubujet and Dedecker, 1998; Tsoungui

et al., 1998).

The dynamical evolution of the fabric tensor, as examined by Shima (1993) and Kruyt and Rothenburg

(2001) during compaction, by Dubujet and Dedecker (1998) during constant volume deformation, by Oda
et al. (1997), Oda and Kazama (1998), Thornton (2000), Thornton and Antony (2000), Oda and Iwashita

(2000) and Kruyt and Rothenburg (2001) during shear, and by Luding (1997) for various boundary con-

ditions, is still an open issue; see also (Roux, 1997, 2000). The inclusion of the concept of a dynamic

material structure tensor into continuum models (Dubujet and Dedecker, 1998) or its relation to advanced

hypoplastic continuum constitutive models, see (Kolymbas et al., 1995; Bauer and Tejchman, 1995;

Gudehus, 1996; Tejchman, 2002), with internal tensorial state variables is another challenge.

The purpose of this paper is to examine the isotropic part of the fabric tensor in static, isotropic, two-

dimensional (2D), polydisperse packings, as a first step. Throughout this paper a volume can also be seen as
an area and a particle surface can be interpreted as the circumference of a particle. After the definition of

the fabric used here, the effect of different particle size distributions on the fabric tensor is examined

theoretically. The solution of our approach is then approximated (in order to allow for simpler equations)

and compared to numerical simulations of corresponding assemblies with different particle size distribution

functions.
2. Single particle case

One quantity that describes the local configuration of a granular assembly to some extent is the fabric

tensor of second order for one particle
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F p
ab ¼

1

a2p

XCp

c¼1

lpca l
pc
b ; with lpca ¼ apnca; ð1Þ
where the nca are the components of the unit normal vector at contact c of particle p with radius ap. Eq. (1) is
a definition of the fabric tensor that uses the so-called branch vector~lpc from the center of particle p to its

contact c. However, the unit normal and the unit branch vector are identical in the case of spherical

particles (disks in 2D). The trace of the fabric tensor,
F p
aa ¼

XCp

c¼1

ncan
c
a ¼ Cp; ð2Þ
is the number of contacts of the particle, Cp.
3. Many particle case

The mean fabric tensor is a quantity that describes the contact network in a given volume V . The three-
dimensional volume is obtained from the two-dimensional area by multiplication with the length of the

system (height of the disks), h. Thus we continue with the expression volume, because the formalism can

easily be extended to three dimensions. Assuming that all particles which lie inside V contribute to the

fabric with a weight Vp ¼ pha2p, we take the average of the fabric tensor by weight Vp
hFabiV ¼ 1

V

X
p

VpF
p
ab: ð3Þ
There would be at least two possibilities for Vp: (i) the volume of the polygon (e.g. obtained via a Voronoi

tesselation) that contains the particle, or (ii) the volume of the particle itself. We choose option (ii) so that in

analogy to the trace of the fabric for a single particle, the trace of the averaged fabric is
hFaaiV ¼ ph
V

X
p2V

a2pC
p ð4Þ

¼ 1

V

X
p

VpCp; ð5Þ
a contact number density––in our definition. Alternative definitions, (Cowin, 1985; Goddard, 1986; Chang,
1988; Sadegh et al., 1991; Dubujet and Dedecker, 1998; Cowin, 1998; Bigoni and Loret, 1999), see may

involve constant prefactors or slightly different contributions, e.g. the connection vector from particle-

center to its contact neighbors center can be used, so that our interpretation may not be applicable.
3.1. Monodisperse particles

In the monodisperse case, Eq. (4) for identical particles (ap ¼ a) reduces to hFaaiV ¼ mhCi, where m is the
volume fraction, defined as the ratio of the volume covered by particles and the total volume. This is

because in 2D, the system arranges itself in an almost regular, periodic triangular lattice. The brackets h� � �i
denote an average by particle, i.e. hCi ¼ ð1=NÞ

P
p C

p, whereas h� � �iV denotes an average by volume-weight,
see Eq. (3). The volume fraction is thus defined as m ¼ h1iV .
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3.2. Polydisperse particles

The situation is different for a polydisperse granular packing, insofar as Eq. (4) does not reduce to

hFaaiV ¼ mC. The principal problem is to evaluate the sum in Eq. (4) as a function of the size distribution.
Assume a polydisperse distribution of particle radii with probability f ðaÞda to find the radius a between

radii a and aþ da, and with
R1
0

daf ðaÞ ¼ 1. Therefore considering the continuous limit of Eq. (5), one has:
Fig. 1.

of the
hFaaiV ¼ N
V

Z 1

0

daVpðaÞCðaÞf ðaÞ; ð6Þ
with the mean number of contacts CðaÞ of particles with radius a. With a continuous size distribution

function, the volume fraction is obtained via
m ¼ h1iV ¼ N
V

Z 1

0

daVpðaÞf ðaÞ: ð7Þ
We will evaluate Eq. (6) using an approach similar to the one proposed by Ouchiyama and Tanaka

(1981). Assume that a reference particle with radius a is surrounded by identical particles of mean radius �a
where �a ¼

R1
0

daaf ðaÞ. Here we are interested in that part of the reference particle�s surface that is covered
or shielded by a contact partner, as sketched in Fig. 1.

The surface angle covered by a particle with radius �a on a particle of radius a is
2/ðaÞ ¼ 2 arcsin
�a

aþ �a

 !
¼ 2 arcsin

1

2þ �

� �
; ð8Þ
where � ¼ a=�a� 1 is a small quantity for narrow size distributions and thus quantifies the deviation from

the monodisperse situation.

The linear compacity
cs ¼ 2/ðaÞCðaÞ=2p ð9Þ
of the reference particle is defined as the fraction of its surface which is shielded by other particles. Now, the

basic assumption is that cs is independent of a or, with other words, the number of contacts is proportional

to the surface (circumference) of a particle (in 2D). Thus, the expected mean coordination number becomes
a+a

.

a
a

φ

Schematic graph of a central particle with radius a, surrounded by identical particles of the mean radius �a. The shielded surface

center particle is shown as thick solid arcs.
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C ¼
Z 1

0

daCðaÞf ðaÞ ¼ pcsq0; ð10Þ
with q0 ¼
R1
0

daf ðaÞ=/ðaÞ. Note that Eqs. (9) and (10) imply that CðaÞ is linear in a (with an offset)––this

can be false for much broader particle size distribution than examined here. In the same spirit, according to

Eq. (10), the trace of the fabric for a polydisperse assembly is
hFaaiV ¼ Cmg2; ð11Þ
with our central result, the correction factor
g2 ¼
ha2ig
a2

¼
R1
0

daa2f ðaÞ=/ðaÞ
q0
R1
0

daa2f ðaÞ
; ð12Þ
and C ¼ hCi implied. The brackets hakig denote the kth moment of the modified distribution f ðaÞ=/ðaÞ,
normalized by q0. This leads to ha0ig ¼ 1 and for a monodisperse granulate, one has again g2 ¼ 1. In our

nomenclature, gk thus means hakig normalized by ak.

3.3. Narrow size distribution

In the limit of a narrow size distribution, by Taylor expansion to first order in � (corresponding to a

Taylor expansion around a ¼ �a), one obtains
1

/ðaÞ �
1

/1ðaÞ
¼ 6

p
1

 
þ

ffiffiffi
3

p

p
�

!
: ð13Þ
In Fig. 2, we plot 1=/ðaÞ from Eq. (8) and its Taylor expansion in Eq. (13). The dashed line on the graph

is the approximation and the solid curve is the exact form. Since the simpler approximation has less than
1% error in the range �0:5 < � < 1:5 (or 0:5 < a=�a < 2:5), we will use it for correspondingly narrow size

distributions in the following. By this approximation, one obtains the correction factor for the fabric of a

polydisperse packing,
g2 � 1þ
ffiffiffi
3

p

p
a3

aa2

 
� 1

!
; ð14Þ
which accounts for arbitrary size distribution functions f ðaÞ, as long as they are not too wide.
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1=/ðaÞ plotted against � ¼ a=�a� 1, in first order approximation and exact. The inset shows the quality factor q ¼ /ðaÞ=/1ðaÞ of
proximation.
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3.4. Special size distributions

In this section, we apply the above theory to special cases in order to evaluate the quality of Eq. (14) in

the following section.
3.4.1. Bidisperse

In a bidisperse system, one has two particle radii a1 and a2 and the size-distribution function is thus
f ðaÞ ¼ f1dða� a1Þ þ f2dða� a2Þ; ð15Þ
with the fractions f1 ¼ N1=N and f2 ¼ N2=N , of particles with radius a1 and a2, respectively, with

N ¼ N1 þ N2. It is straightforward to compute the terms necessary for a calculation of g2 in both Eqs. (12)

and (14) one by one. Combining the terms
�a ¼ f1a1 þ f2a2;

a2 ¼ f1a21 þ f2a22;

a3 ¼ f1a31 þ f2a32;

q0 ¼ f1/ða1Þ�1 þ f2/ða2Þ�1
;

q0ha2ig ¼ f1a21/ða1Þ
�1 þ f2a22/ða2Þ

�1
; and

/ða1;2Þ ¼ arcsin½1=ð1þ a1;2=aÞ�;
allows the calculation of both the exact expression and the approximate one. For a special bidisperse system

with a1 ¼ a, a2 ¼ 3a, and f1 ¼ f2 ¼ 1=2, i.e. �1 ¼ � 1
2
and �2 ¼ 1

2
, we are in the range where our approxi-

mation, Eq. (14), has less than about 1% error, see Fig. 2. Therefore, for this special bidisperse situation,

one gets
�a ¼ 2a;

a2 ¼ 5a2;

a3 ¼ 14a3;

q0 ¼ ð/ða1Þ�1 þ /ða2Þ�1Þ=2; and

q0ha2ig ¼ ða2/ða1Þ�1 þ 9a2/ða2Þ�1Þ=2; with

/ða1Þ ¼ arcsin½1=ð1þ 1=2Þ� ¼ arcsin 2=3ð Þ; and

/ða2Þ ¼ arcsin½1=ð1þ 3=2Þ� ¼ arcsinð2=5Þ:
After explicit computation this leads to the exact g2 ¼ 1:223 or to g2 � 1:220 from Eq. (14), in good

agreement with the exact value for a binary mixture with size ratio a2=a1 ¼ 3.
3.4.2. Uniform disperse

In a uniform disperse system, a special case of polydisperse systems, the radius of the particles is dis-

tributed uniformly between ð1� w0Þ�a and ð1þ w0Þ�a where 2w0�a is the width of size-distribution function
f ðaÞ ¼ 1

2w0�a
Hðð1þ w0Þ�a� aÞHða� ð1� w0Þ�aÞ; ð16Þ
with the Heaviside step function HðxÞ ¼ 1 for xP 0 and HðxÞ ¼ 0 elsewhere. It is again straightforward to

compute the contributions to g2, so that one obtains
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a2 ¼ ð1=3Þa2ð3þ w2
0Þ;

a3 ¼ a3ð1þ w2
0Þ;

q0 ¼
1

2w0

Z 1þw0

1�w0

dx
arcsinð1=ð1þ xÞÞ ;

q0ha2ig ¼
a2

2w0

Z 1þw0

1�w0

dxx2

arcsinð1=ð1þ xÞÞ ; and

g2 ¼
3
R 1þw0

1�w0

dxx2

arcsinð1=ð1þxÞÞ

ð3þ w2
0Þ
R 1þw0

1�w0

dx
arcsinð1=ð1þxÞÞ

:

The polydispersity correction for w0 ¼ 0:5, leads to g2 ¼ 1:085, while from the approximation one gets

g2 ¼ 1:083, both again in good agreement.
4. Simulations and results

For a numerical verification of our theoretical predictions, we perform soft sphere molecular dynamics

(MD) simulations of disks in a box with flat walls. The interaction of the particles is the simplest linear

spring-dashpot model, see e.g. (Luding et al., 1994; Luding, 1997), disregarding friction and nonlinear

behavior at the contact. Firstly, we generate about N ¼ 2000 particles (disks), on a sparse square lattice,
with random radii according to the distribution function of radii f ðaÞ, as defined above, and give them

some small initial velocity, in order to create initial disorder. Secondly, we use the MD simulation and

compress the system until a pre-defined volume fraction, say m ¼ 0:9, is reached. In most cases, compression

is achieved by moving the top-wall down. However, also other protocols of compression like a stress-

controlled isotropic compression did not lead to recognizably different initial conditions––the lack of

friction is the likely reason for this independence on the history of preparation. Then the simulation is

continued until almost all kinetic energy is dissipated. Fig. 3 shows one typical steady state configuration.
Typical uniform disperse configuration with w0 ¼ 0:5. (Left) Particles are plotted as circles and the straight lines indicate the

ubsystems. (Right) Particle contact network for the same configuration.
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Averages are performed in the middle of the system, in order to avoid boundary effects, i.e. we do not use

the cells close to the boundaries displayed in Fig. 3. The center-subsystem can be divided further into

various smaller subsystems to allow for different averages of varying quality. Within the statistical fluc-

tuations, the system is spatially homogeneous, and the majority of the overlaps detected is smaller than a
few percent of the particle diameter, even for the highest densities used.

For the comparison with theory, the average of the trace of the fabric tensor, the average of the contact

number, and the g2 factor are computed directly from the simulations center-sub-systems using Eq. (14).

First, we examine the probability distribution of the orientation, h, of the fabric tensor, i.e. the orien-

tation of the eigenvector that corresponds to the major eigenvalue. Fig. 4(a) shows the polar plot of the

distribution of angles h. Fig. 4(b) is similar to (a), only the angles of the branch vectors / for each contact

are used to compute the probability distribution. These two graphs show that the system in static equi-

librium is almost isotropic and hence has no memory about its previous compression. The compression was
performed vertically, but a small majority of orientations is found at h � p=2. We applied several different

uniaxial compression protocols, but the homogeneity of the system remains––within about 10% fluctua-

tions. There is no indication of a correlation between the applied strain and the response of the fabric

tensor. We attribute this fact to the lack of friction in our model; if friction is present, one expects memory

effects, i.e. a dependence of pðhÞ on the history of the construction of the packing, see (Dubujet and

Dedecker, 1998; Radjai et al., 1998, 1999).

In order to quantify the deviation from an isotropic packing, we perform Fourier series fits of the form
Fig. 4.

pð/Þ (
pðhÞ ¼ p0 þ p2 sinð2hþ h2Þ þ p4 sinð4hþ h4Þ; ð17Þ
shown in Fig. 4 as lines (the maximum order of the fit is given in the inset). Order 2 means, for example, that

all terms higher than order 2 are neglected. For the distribution pðh), one obtains for the order 4 fit,

p2=p0 ¼ �0:07 and p4=p0 ¼ 0:15, whereas one has systematically smaller deviation from isotropy, i.e.

p2=p0 ¼ �0:04 and p4=p0 ¼ 0:02, for pð/Þ.

4.1. Bidisperse

The parameters for the bidisperse size-distribution are the same as in Section 3.4.1. First the simulation

results are compared to our theoretical predictions. We divide the center system (disregarding the boundary

subsystems) into 8 subsystems and calculate hFaaiV , g2, C, and m for five different simulations with different
initial configurations. Fig. 5 shows hFaaiV plotted against Cmg2, where the line indicates the identity. The

simulation data fluctuate around the theoretically expected curve.

Therefore, using x ¼ hFaaiV =Cmg2, we compute the mean, hxi ¼ ð1=nÞ
P

x, and the typical fluctuations,

rx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i � hxi2

q
=ðn� 1Þ, for different numbers of subsystems n. Fig. 6 shows the error plotted against the
4
2
0

4
2
0(a) (b)

Polar plot of the distributions pðhÞ (a), where h is given by the orientation of the major eigendirection of the fabric tensor, and

b), where / is given by the orientations of the branch vectors between two particles in contact.



Fig. 5. Average of the trace of the fabric tensor plotted against Cmg2 for bidisperse systems from five different realizations. The solid line

is the theoretically expected relation, see Eq. (11). Data set 1 has a density of m ¼ 0:84, whereas the density of the other data sets is

m ¼ 0:90.
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number of subsystems. It increases with increasing number of subsystems or for decreasing number of
particles in the sample, as displayed in the inset. The data show that the error of a measurement depends on

the size of the averaging volume or representative elementary volume (REV). The relative fluctuations of

one measurement are of the order of 1% for 70 particles averaged over, proportional to M�1 when M is the

number of particles in the subsystem. The second important fact can be extracted from the other inset,

namely from the plot of hxi vs.M , where one can see that the theory slightly underestimates the true contact

number density. In conclusion, hxi is independent of the number of subsystems, and it’s error decreases with

M , or tends to practically zero for large enough subsystems.
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Second, the g2 factor calculated from the simulations is compared to the theoretically expected value. In

the total system, the particle size distribution is defined according to Eq. (15) with f ða1Þ ¼ f ða2Þ ¼ 1
2
. But

when taking the average in subsystems, the values of f ða1Þ and f ða2Þ differ. It is straightforward to rewrite

Eq. (14) as
g2 ¼ 1�
ffiffiffi
3

p

p
1

�
� 14� 13Df
ð2� Df Þð5� 4Df Þ

�
; ð18Þ
where g2 is a function of Df ¼ f ða2Þ � f ða1Þ and it will be equal to the global value 1.220 only when Df
equals zero. When g2 is plotted against Df for different simulations, as expected, one recovers the theo-

retical approximation Eq. (18), indicating that the fluctuations in Figs. 5 and 6 are of statistical origin.
4.2. Uniform disperse

The parameters for the bidisperse size-distribution are the same as in Section 3.4.2. Here, we generate the

particles with uniformly distributed radii, see Eq. (16). In Fig. 7, hFaaiV is plotted against Cmg2. Again we

observe fluctuations around the theoretically expected values. As mentioned before, the scatter in the data

is due to the averaging over finite samples. The slight underestimation maybe due to a limited validity of
our assumptions, or due to the overlap that is not taken into account.
4.2.1. Coordination number and compacity

In our preparation procedure, the system size is fixed at the desired value such that a constant density is

achieved. This implies that below the minimal possible density (uniform disperse size distribution)
m0 � 0:837� 0:002, no stable contact network could be obtained for the frictionless systems considered

here. Note that the issue of a maximum random packing density of a bi- or polydisperse sphere packing is

still subject of ongoing research, see e.g. Liu and Ha (2002), Luding (2002b) and references therein.

Therefore, we present data only at higher densities in the following.

For the uniform disperse size-distribution, we check the basic assumption of our theory, namely that cs
does not depend on the particle size. In Fig. 8, the values of cs are plotted for different densities and different

particle sizes. We notice that cs is constant for the larger densities, but slightly decreases with particle size

for lower densities. This implies that our analysis could be somewhat less accurate in dilute systems,
Fig. 7. The plot as in Fig. 5 for uniform disperse systems with global density m ¼ 0:9.
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however, within the fluctuations of the data due to the finite size of the samples, we conclude that the

assumption cs ¼ const. is reasonable.

In Fig. 9, the contact number is plotted for different sizes and for different system densities. The data

show that the smallest possible particles will have a coordination number of approximately Cða ! 0Þ � 2

and that the increase of coordination number with the particle size is slightly increasing with the density.
Thus, we expect also the mean coordination number to increase slightly with density due to the finite

stiffness of the particles that allow for additional contacts when the density is increasing. Our results for

different densities are in qualitative agreement with the simulations by Kruyt and Rothenburg, see Fig. 9 in

the paper by Kruyt and Rothenburg (2001). Note that coordination numbers CðaÞ < 4 are frequently

observed, while CP 4 is valid for these frictionless systems.
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Fig. 11. The same data as in Fig. 5, but for uniform disperse particles with different volume fractions 0:846 m6 0:90. The two figures

are for four and nine subsystems evaluated.
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4.2.2. Local size distribution

In Fig. 10, the g2 factor is plotted for the different subsystems from the five different realizations. The line

is the theoretically expected value, however, the simulation results are fluctuating around it. We attribute

the variation of g2 again to the local size distribution function within one subsystem, which is different from
the global distribution function. In the following, the local g2 will be used.
4.2.3. Variable density

In Fig. 11, the trace of the fabric tensor hFaaiV is plotted against Cmg2 from simulations with different

volume fractions and a uniform disperse particle size distribution. The agreement between the data and the
theoretical prediction is reasonable also for smaller densities m < 0:90, as used above. With decreasing

density m, the trace of the fabric tensor also decays, but remains on the identity line. Hence our theoretical

correction factor g2 works for bi- and uniform-disperse particle size distribution functions likewise.

In Fig. 12, the probability distribution of the direction of the branch vectors is plotted for different

densities. Like in the bidisperse case, there is no evidence for anisotropy in the packing.
4.3. Coordination number and overlap

In Fig. 13, the coordination number in the center cells is plotted against the density obtained in these

cells. Note that the density in the center cell is somewhat larger than the global density due to the empty

spaces between the wall and those particles contacting it. The larger the number of subsystems and the

smaller the global density, the larger are the fluctuations in both C and m. Even unphysical values C < 4 can

be obtained due to our evaluation procedure that involves also so-called ‘‘rattlers’’, i.e. particles with no

contacts that do not contribute to the mechanically stable contact-network. The coordination number
rapidly increases from a value C � 4 at the smallest density. However, within the scope of this paper, an

evaluation of the functional behavior is postponed and we do not examine this quantity further.

As the final plot, we present the mean dimensionless overlap as a function of the global density for the

simulations presented above, in Fig. 14. We remark that the typical overlap obtained is only about 2.5% of
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Fig. 12. Polar plot of pð/Þ for the orientation of the branch vector for global volume fractions (a) m ¼ 0:85, (b) m ¼ 0:87, (c) m ¼ 0:89,

and (d) m ¼ 0:90.
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the particle radius for m ¼ 0:91, and that the overlap increases linearly from zero, at the minimal density
mc � 0:84.
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5. Conclusion and discussion

In summary, the trace of the fabric tensor was examined in almost isotropic, disordered arrays of

polydisperse, frictionless particles in static equilibrium, at different densities. The key result is an analytical
expression for the contact number density, i.e. the trace of the fabric tensor. It factorizes into three con-

tributions: (i) the volume fraction (or, with other words, the density), (ii) the mean coordination number (a

function of density), and (iii) a dimensionless correction factor g2, which is only dependent on the particle

size probability distribution function. The theoretical prediction for g2 is verified with molecular dynamics

simulations for various size distributions and densities. As long as the distribution is reasonably narrow the

agreement between theory and simulation is reasonable, within the statistical fluctuations. The latter issue

was also addressed in more detail, and a typical deviation of about 1% from the mean is obtained for

averaging volumes containing around 100 particles. Preliminary simulations with anisotropic configura-
tions and frictional particles show that the results still hold within a few percent (for the cases examined,

however, larger differences can be expected for strongly different protocols of preparation of the sample).

Even though friction should reduce the average number of contacts for the same preparation protocol, the

density would also be reduced at the same time. Thus there is hope that our relations still hold as function

of density. In any case, we expect that our results are a starting point for studies involving more realistic

systems and particles.

The trace of the fabric tensor is a quantity that is related to the bulk stiffness of the material, see

(Rothenburg and Selvadurai, 1981; Chang, 1988; L€atzel et al., 2000; Kruyt and Rothenburg, 2001; Luding,
2002a). Our theoretical prediction relates it to the first three moments of the size distribution function (in

the case of a sufficiently narrow size distribution), and thus allows to predict a macroscopic material

property based on a microscopic property of the material. The prediction is that, in general, the trace of the

fabric––and with it the bulk stiffness––will increase with g2, a function of the ‘‘width’’ of the size distri-

bution.

Preliminary studies, concerning the trace of the stress tensor for systems with different particle sizes,

hraaiV , show that it contains a lowest order correction factor dependent on the first two moments of f ðaÞ,
i.e. hraaiV / ða2=a2 � 1Þ, see also (Luding, 2002b).

Future work, concerns the correction for the fabric and the pressure also for broader polydisperse size

distributions, and for three-dimensions. Furthermore, the presented results should be generalized towards

an-isotropic structures and frictional, cohesive and possibly nonspherical particles.
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