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Abstract

The trace of the fabric tensor in static, isotropic, two-dimensional, frictionless, polydisperse granular materials is
examined theoretically and numerically. In the monodisperse case, the trace of the fabric tensor equals the product of
volume fraction and coordination number—thus the fabrics trace can be seen as contact density. For various size
distributions, we obtain a correction factor to the monodisperse observation, which involves the first three moments of
the particle size distribution function. The theoretical prediction is found to be in good agreement with numerical
simulations of static frictionless systems.
© 2003 Elsevier Ltd. All rights reserved.

Keywords: Fabric tensor; Discrete element simulation; Bidisperse and polydisperse size distributions

1. Introduction

Inhomogeneous and anisotropic materials attract still increasing interest, not only in the framework of
classical disordered systems like glasses but also, more recently, in connection to granular materials, see
(Roux et al., 1987; Guyon et al., 1990; Vardoulakis and Sulem, 1995; Jaeger et al., 1996; Wolf and
Grassberger, 1997; Herrmann and Luding, 1998; Vermeer et al., 2001). Disordered materials can be
characterized by frozen-in or quenched disorder, a property that distinguishes them from a crystal, where
long-range order exists, or a simple fluid or gas, where homogeneity and isotropy can often be assumed.
Connected to the structure of disordered materials, and of more general relevance, are concepts like rigidity
percolation, see (Moukarzel, 1996; Jacobs, 1998), or internal variables to describe damage/fracture, see
(Cambou and Sidoroff, 1985; Vardoulakis et al., 1998; Kun and Herrmann, 2000). Research focusses on the
relations between the quantities stress, strain, and fabric, see (Cowin, 1985; Sadegh et al., 1991; Roux et al.,
1991; Darve et al., 1995), and very recently a tremendous interest in homogenization and constitutive laws
in the framework of a micro-macro transition emerged, see (Vermeer et al., 2001; Darve et al., 1995;
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Cambou et al., 1995; Emeriault and Chang, 1997; Cowin, 1998; Kuhl et al., 2000; Ehlers and Miillerschon,
2000; Dedecker et al., 2000; Oda and Iwashita, 2000; Bagi, 1996, 1999; Edwards and Grinev, 1999; Ball and
Blumenfeld, 2002; Bagi, 2003). A helpful tool for such studies are discrete element or, with other words,
molecular dynamics simulation techniques, as introduced by Cundall and Strack (1979, 1983), Allen and
Tildesley (1987), and applied to idealized granular materials by Radjai et al. (1999), Latzel et al. (2000),
Luding et al. (2001a,b), Luding and Herrmann (2001), Létzel et al. (2001) and Luding (2002a), and many
others.

An essential question is the characterization of disorder and, as a first step, the quantitative prediction of
mean material properties. Straightforward progress is possible when a periodic structure (crystal) is
regarded: one has only to account for one unit cell and global properties can easily be predicted, as done by
Kruyt and Rothenburg (2001), Luding and Herrmann (2001) and Luding (2003, 2004). For disordered
media, the concept of the fabric tensor naturally occurs when the system consists of an elastic network, or a
packing of discrete particles. The fabric tensor is then a zero- and second-order harmonic fit to the
probability distribution function for load-carrying contacts in a given direction.

Various definitions of the fabric tensor exist in the literature, see (Rothenburg and Selvadurai, 1981;
Goddard, 1986; Mehrabadi et al., 1988; Chang, 1988; Thornton and Randall, 1988), including definitions
for elliptical or polygonal particles, see (Sadd et al., 1997; Goddard, 1998), and tensors of higher rank than
two, see (Chang et al., 1995; Jenkins, 1997; Tobita, 1997). The fabric tensor can be related to the anisotropic
material stiffness tensor, see (Bathurst and Rothenburg, 1988; Chang et al., 1995; Kruyt and Rothenburg,
1996; Liao and Chang, 1997; Liao et al., 1997; Bigoni and Loret, 1999; Bagi, 1999), in static, frictionless
assemblies. The isotropic part, i.e. the trace of the fabric is then a measure for the bulk stiffness or com-
pressibility under isotropic strain, see (Latzel et al., 2000; Luding, 2002a). The fabric is most readily
examined by means of molecular dynamics simulations, as done by Cundall and Strack (1983), Thornton
(1997), Luding (1997), Thornton (2000), Thornton and Antony (2000) and Oda and Iwashita (2000), but
also experiments are available, see for example (Oda et al., 1997; Dubujet and Dedecker, 1998; Tsoungui
et al., 1998).

The dynamical evolution of the fabric tensor, as examined by Shima (1993) and Kruyt and Rothenburg
(2001) during compaction, by Dubujet and Dedecker (1998) during constant volume deformation, by Oda
et al. (1997), Oda and Kazama (1998), Thornton (2000), Thornton and Antony (2000), Oda and Iwashita
(2000) and Kruyt and Rothenburg (2001) during shear, and by Luding (1997) for various boundary con-
ditions, is still an open issue; see also (Roux, 1997, 2000). The inclusion of the concept of a dynamic
material structure tensor into continuum models (Dubujet and Dedecker, 1998) or its relation to advanced
hypoplastic continuum constitutive models, see (Kolymbas et al., 1995; Bauer and Tejchman, 1995;
Gudehus, 1996; Tejchman, 2002), with internal tensorial state variables is another challenge.

The purpose of this paper is to examine the isotropic part of the fabric tensor in static, isotropic, two-
dimensional (2D), polydisperse packings, as a first step. Throughout this paper a volume can also be seen as
an area and a particle surface can be interpreted as the circumference of a particle. After the definition of
the fabric used here, the effect of different particle size distributions on the fabric tensor is examined
theoretically. The solution of our approach is then approximated (in order to allow for simpler equations)
and compared to numerical simulations of corresponding assemblies with different particle size distribution
functions.

2. Single particle case

One quantity that describes the local configuration of a granular assembly to some extent is the fabric
tensor of second order for one particle
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where the n¢ are the components of the unit normal vector at contact c of particle p with radius a,. Eq. (1) is
a definition of the fabric tensor that uses the so-called branch vector /7 from the center of particle p to its
contact ¢. However, the unit normal and the unit branch vector are identical in the case of spherical
particles (disks in 2D). The trace of the fabric tensor,

cP

Fo,= ning =C7, (2)

c=1

is the number of contacts of the particle, C?.

3. Many particle case

The mean fabric tensor is a quantity that describes the contact network in a given volume V. The three-
dimensional volume is obtained from the two-dimensional area by multiplication with the length of the
system (height of the disks), 2. Thus we continue with the expression volume, because the formalism can
easily be extended to three dimensions. Assuming that all particles which lie inside V' contribute to the
fabric with a weight V, = nhaf,, we take the average of the fabric tensor by weight 7,

Eady =5 X1 ®)

There would be at least two possibilities for ¥,: (i) the volume of the polygon (e.g. obtained via a Voronoi
tesselation) that contains the particle, or (ii) the volume of the particle itself. We choose option (ii) so that in
analogy to the trace of the fabric for a single particle, the trace of the averaged fabric is

nh
(Fuy =5 S aCr )
peEV
1
=7 2% ®
P

a contact number density—in our definition. Alternative definitions, (Cowin, 1985; Goddard, 1986; Chang,
1988; Sadegh et al., 1991; Dubujet and Dedecker, 1998; Cowin, 1998; Bigoni and Loret, 1999), see may
involve constant prefactors or slightly different contributions, e.g. the connection vector from particle-
center to its contact neighbors center can be used, so that our interpretation may not be applicable.

3.1. Monodisperse particles

In the monodisperse case, Eq. (4) for identical particles (a, = a) reduces to (F,,), = v(C), where v is the
volume fraction, defined as the ratio of the volume covered by particles and the total volume. This is
because in 2D, the system arranges itself in an almost regular, periodic triangular lattice. The brackets (- - -)
denote an average by particle, i.e. (C) = (1/N) >_, C?, whereas (- - -),, denotes an average by volume-weight,
see Eq. (3). The volume fraction is thus defined as v = (1),.



2566 M. Madadi et al. | International Journal of Solids and Structures 41 (2004) 25632580

3.2. Polydisperse particles

The situation is different for a polydisperse granular packing, insofar as Eq. (4) does not reduce to
(F,,), = vC. The principal problem is to evaluate the sum in Eq. (4) as a function of the size distribution.
Assume a polydisperse distribution of particle radii with probability f(a)da to find the radius a between
radii ¢ and a + da, and with fooo daf(a) = 1. Therefore considering the continuous limit of Eq. (5), one has:

Ev = [ dan@caria) (©

with the mean number of contacts C(a) of particles with radius a. With a continuous size distribution
function, the volume fraction is obtained via

=y =3 [ danara) )

We will evaluate Eq. (6) using an approach similar to the one proposed by Ouchiyama and Tanaka
(1981). Assume that a reference particle with radius a is surrounded by identical particles of mean radius a
where @ = [;* daaf (a). Here we are interested in that part of the reference particle’s surface that is covered
or shielded by a contact partner, as sketched in Fig. 1.

The surface angle covered by a particle with radius @ on a particle of radius a is

2¢(a) = 2 arcsin (aj—a) = 2 arcsin <2 _IF 6), (8)

where e = a/a — 1 is a small quantity for narrow size distributions and thus quantifies the deviation from
the monodisperse situation.
The linear compacity

¢, = 2¢(a)C(a) /2 9)

of the reference particle is defined as the fraction of its surface which is shielded by other particles. Now, the
basic assumption is that ¢, is independent of a or, with other words, the number of contacts is proportional
to the surface (circumference) of a particle (in 2D). Thus, the expected mean coordination number becomes

Fig. 1. Schematic graph of a central particle with radius a, surrounded by identical particles of the mean radius a. The shielded surface
of the center particle is shown as thick solid arcs.
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C= /OOC daC(a)f (a) = mcyqo, (10)

with go = fox daf(a)/¢(a). Note that Egs. (9) and (10) imply that C(a) is linear in a (with an offset)—this
can be false for much broader particle size distribution than examined here. In the same spirit, according to
Eq. (10), the trace of the fabric for a polydisperse assembly is

(Foo)y = Cvg, (11)

with our central result, the correction factor

(a®) *dad’*f(a)/P(a

P P 5 OO -
a2 90 fo daa’f(a)

and C = (C) implied. The brackets (a*) . denote the kth moment of the modified distribution f(a)/¢(a),

normalized by go. This leads to (a”) . = 1 and for a monodisperse granulate, one has again g, = 1. In our

nomenclature, g, thus means (a*), normalized by a*.

3.3. Narrow size distribution

In the limit of a narrow size distribution, by Taylor expansion to first order in € (corresponding to a
Taylor expansion around a = a), one obtains

IR T3
¢<a>”¢1<a>n<” z ) 1)

In Fig. 2, we plot 1/¢(a) from Eq. (8) and its Taylor expansion in Eq. (13). The dashed line on the graph
is the approximation and the solid curve is the exact form. Since the simpler approximation has less than
1% error in the range —0.5 < e < 1.5 (or 0.5 < a/a < 2.5), we will use it for correspondingly narrow size
distributions in the following. By this approximation, one obtains the correction factor for the fabric of a
polydisperse packing,

NI
e+ (o), (14)

which accounts for arbitrary size distribution functions f(a), as long as they are not too wide.

10

exact [
approximation -0

1/¢ (a)

Fig. 2. 1/¢(a) plotted against ¢ = a/a — 1, in first order approximation and exact. The inset shows the quality factor ¢ = ¢(a)/¢$,(a) of
the approximation.
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3.4. Special size distributions

In this section, we apply the above theory to special cases in order to evaluate the quality of Eq. (14) in
the following section.

3.4.1. Bidisperse
In a bidisperse system, one has two particle radii a¢; and a, and the size-distribution function is thus
fla) = fid(a —ar) + fré(a — az), (15)

with the fractions f; = N;/N and f, = N,/N, of particles with radius a; and a, respectively, with
N = N, + N,. It is straightforward to compute the terms necessary for a calculation of g, in both Egs. (12)
and (14) one by one. Combining the terms

a = fia, + fa,
a2 :fla% +.f2a§7
a’ :fla? +f2a37

g0 = fidla) "+ fap(ar) ",

q(@®), = fiaip(ar)”' + fra3p(ar)”',  and

¢(ay2) = arcsin[l /(1 + a2 /a)],
allows the calculation of both the exact expression and the approximate one. For a special bidisperse system
with @ = a, @y =3a, and f; = o = 1/2, i.e. ¢ = —{ and ¢, =1, we are in the range where our approxi-
mation, Eq. (14), has less than about 1% error, see Fig. 2. Therefore, for this special bidisperse situation,
one gets

a =2a,

a® = 54°,

@ = l4a’,

90 = (p(@)”" + ¢(ax)”)/2, and

go(@), = (@P(ar)” +9a°P(a2)")/2,  with

¢(ay) = arcsin[1/(1 4+ 1/2)] = arcsin (2/3), and
¢(ay) = arcsin[1/(1 + 3/2)] = arcsin(2/5).

After explicit computation this leads to the exact g, = 1.223 or to g, =~ 1.220 from Eq. (14), in good
agreement with the exact value for a binary mixture with size ratio a,/a; = 3.

3.4.2. Uniform disperse
In a uniform disperse system, a special case of polydisperse systems, the radius of the particles is dis-
tributed uniformly between (1 — wy)a and (1 + wg)a where 2wya is the width of size-distribution function

1

2W06_l

f(a) O((1 +wo)a —a)B(a — (1 —wo)a), (16)

with the Heaviside step function @(x) = 1 for x > 0 and @ (x) = 0 elsewhere. It is again straightforward to
compute the contributions to g, so that one obtains
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1—wp arcsin(1/(14+x))

& = "
B+ wd) [ st

1—wy arcsin(1/(14x))

The polydispersity correction for wy = 0.5, leads to g, = 1.085, while from the approximation one gets
g» = 1.083, both again in good agreement.

4. Simulations and results

For a numerical verification of our theoretical predictions, we perform soft sphere molecular dynamics
(MD) simulations of disks in a box with flat walls. The interaction of the particles is the simplest linear
spring-dashpot model, see e.g. (Luding et al., 1994; Luding, 1997), disregarding friction and nonlinear
behavior at the contact. Firstly, we generate about N = 2000 particles (disks), on a sparse square lattice,
with random radii according to the distribution function of radii f(a), as defined above, and give them
some small initial velocity, in order to create initial disorder. Secondly, we use the MD simulation and
compress the system until a pre-defined volume fraction, say v = 0.9, is reached. In most cases, compression
is achieved by moving the top-wall down. However, also other protocols of compression like a stress-
controlled isotropic compression did not lead to recognizably different initial conditions—the lack of
friction is the likely reason for this independence on the history of preparation. Then the simulation is
continued until almost all kinetic energy is dissipated. Fig. 3 shows one typical steady state configuration.
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Fig. 3. Typical uniform disperse configuration with wy = 0.5. (Left) Particles are plotted as circles and the straight lines indicate the
6 x 6 subsystems. (Right) Particle contact network for the same configuration.
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Averages are performed in the middle of the system, in order to avoid boundary effects, i.e. we do not use
the cells close to the boundaries displayed in Fig. 3. The center-subsystem can be divided further into
various smaller subsystems to allow for different averages of varying quality. Within the statistical fluc-
tuations, the system is spatially homogeneous, and the majority of the overlaps detected is smaller than a
few percent of the particle diameter, even for the highest densities used.

For the comparison with theory, the average of the trace of the fabric tensor, the average of the contact
number, and the g, factor are computed directly from the simulations center-sub-systems using Eq. (14).

First, we examine the probability distribution of the orientation, 0, of the fabric tensor, i.e. the orien-
tation of the eigenvector that corresponds to the major eigenvalue. Fig. 4(a) shows the polar plot of the
distribution of angles 6. Fig. 4(b) is similar to (a), only the angles of the branch vectors ¢ for each contact
are used to compute the probability distribution. These two graphs show that the system in static equi-
librium is almost isotropic and hence has no memory about its previous compression. The compression was
performed vertically, but a small majority of orientations is found at 6 =~ /2. We applied several different
uniaxial compression protocols, but the homogeneity of the system remains—within about 10% fluctua-
tions. There is no indication of a correlation between the applied strain and the response of the fabric
tensor. We attribute this fact to the lack of friction in our model; if friction is present, one expects memory
effects, i.e. a dependence of p(0) on the history of the construction of the packing, see (Dubujet and
Dedecker, 1998; Radjai et al., 1998, 1999).

In order to quantify the deviation from an isotropic packing, we perform Fourier series fits of the form

p(@) =po+p sm(20 + 92) + Pa Sll’l(40 + 04), (17)

shown in Fig. 4 as lines (the maximum order of the fit is given in the inset). Order 2 means, for example, that
all terms higher than order 2 are neglected. For the distribution p(0), one obtains for the order 4 fit,
p2/po = —0.07 and ps/py = 0.15, whereas one has systematically smaller deviation from isotropy, i.e.
p2/po = —0.04 and p4/py = 0.02, for p(¢).

4.1. Bidisperse

The parameters for the bidisperse size-distribution are the same as in Section 3.4.1. First the simulation
results are compared to our theoretical predictions. We divide the center system (disregarding the boundary
subsystems) into 8 subsystems and calculate (F,,),, £, C, and v for five different simulations with different
initial configurations. Fig. 5 shows (F,,), plotted against Cvg,, where the line indicates the identity. The
simulation data fluctuate around the theoretically expected curve.

Therefore, using x = (F,,),/Cvga, we compute the mean, (x) = (1/n) > x, and the typical fluctuations,

o, =/ (x2) — (x)?/(n — 1), for different numbers of subsystems n. Fig. 6 shows the error plotted against the

Fig. 4. Polar plot of the distributions p(0) (a), where 0 is given by the orientation of the major eigendirection of the fabric tensor, and
p(¢) (b), where ¢ is given by the orientations of the branch vectors between two particles in contact.
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Fig. 5. Average of the trace of the fabric tensor plotted against Cvg, for bidisperse systems from five different realizations. The solid line
is the theoretically expected relation, see Eq. (11). Data set 1 has a density of v = 0.84, whereas the density of the other data sets is
v =0.90.
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Fig. 6. The error g, of Cvg,/ (F,), for different numbers of subsystems n. The line is a fit to the data o, ~ 9 x 10~*n. The insets shows
the same data plotted against the number of particles M in the subsystems. The top inset gives the error with the fit o, ~ 0.7M~!
(dashed line), the bottom inset gives the average (x), which should be unity (dotted line), and the error-bars indicate the fluctuations of
the n different values.

number of subsystems. It increases with increasing number of subsystems or for decreasing number of
particles in the sample, as displayed in the inset. The data show that the error of a measurement depends on
the size of the averaging volume or representative elementary volume (REV). The relative fluctuations of
one measurement are of the order of 1% for 70 particles averaged over, proportional to M~! when M is the
number of particles in the subsystem. The second important fact can be extracted from the other inset,
namely from the plot of (x) vs. M, where one can see that the theory slightly underestimates the true contact
number density. In conclusion, (x) is independent of the number of subsystems, and it’s error decreases with
M, or tends to practically zero for large enough subsystems.
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Second, the g, factor calculated from the simulations is compared to the theoretically expected value. In
the total system, the particle size distribution is defined according to Eq. (15) with f(a;) = f(a>) = 1. But
when taking the average in subsystems, the values of f(a;) and f(a,) differ. It is straightforward to rewrite
Eq. (14) as

V3 14 — 13Af
0=1-7 (- g=ane o) (%)

where g, is a function of Af = f(a,) — f(a1) and it will be equal to the global value 1.220 only when Af
equals zero. When g, is plotted against Af for different simulations, as expected, one recovers the theo-
retical approximation Eq. (18), indicating that the fluctuations in Figs. 5 and 6 are of statistical origin.

4.2. Uniform disperse

The parameters for the bidisperse size-distribution are the same as in Section 3.4.2. Here, we generate the
particles with uniformly distributed radii, see Eq. (16). In Fig. 7, (F,,), is plotted against Cvg,. Again we
observe fluctuations around the theoretically expected values. As mentioned before, the scatter in the data
is due to the averaging over finite samples. The slight underestimation maybe due to a limited validity of
our assumptions, or due to the overlap that is not taken into account.

4.2.1. Coordination number and compacity

In our preparation procedure, the system size is fixed at the desired value such that a constant density is
achieved. This implies that below the minimal possible density (uniform disperse size distribution)
vo ~ 0.837 +0.002, no stable contact network could be obtained for the frictionless systems considered
here. Note that the issue of a maximum random packing density of a bi- or polydisperse sphere packing is
still subject of ongoing research, see e.g. Liu and Ha (2002), Luding (2002b) and references therein.
Therefore, we present data only at higher densities in the following.

For the uniform disperse size-distribution, we check the basic assumption of our theory, namely that ¢,
does not depend on the particle size. In Fig. 8, the values of ¢, are plotted for different densities and different
particle sizes. We notice that ¢, is constant for the larger densities, but slightly decreases with particle size
for lower densities. This implies that our analysis could be somewhat less accurate in dilute systems,
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Fig. 7. The plot as in Fig. 5 for uniform disperse systems with global density v = 0.9.
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Fig. 8. Linear compacity, see Eq. (9), for different particle sizes and different densities. The lines are line-fits to the data with offset
¢y =~ 0.780, 0.765, 0.795, 0.800, and slope ¢,, = —0.09, —0.04, —0.02, 0.005, for increasing density. Only for low densities close to the
stability threshold the assumption fails.

however, within the fluctuations of the data due to the finite size of the samples, we conclude that the
assumption ¢, = const. is reasonable.

In Fig. 9, the contact number is plotted for different sizes and for different system densities. The data
show that the smallest possible particles will have a coordination number of approximately C(a — 0) ~ 2
and that the increase of coordination number with the particle size is slightly increasing with the density.
Thus, we expect also the mean coordination number to increase slightly with density due to the finite
stiffness of the particles that allow for additional contacts when the density is increasing. Our results for
different densities are in qualitative agreement with the simulations by Kruyt and Rothenburg, see Fig. 9 in
the paper by Kruyt and Rothenburg (2001). Note that coordination numbers C(a) < 4 are frequently
observed, while C > 4 is valid for these frictionless systems.

C(a)

0 I I I I
0 0.2 0.4 0.6 0.8 1 12 14 16

a/a

Fig. 9. Contact number for different particles sizes and different densities. The lines are line-fits (Cy + C,a/a) to the data with offset
Cy =~ 2.35, 2.14, 2.16, 2.08, and slope C,, ~ 1.69, 2.20, 2.46, 2.75, for increasing density.
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Fig. 11. The same data as in Fig. 5, but for uniform disperse particles with different volume fractions 0.84 <v < 0.90. The two figures
are for four and nine subsystems evaluated.
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4.2.2. Local size distribution

In Fig. 10, the g, factor is plotted for the different subsystems from the five different realizations. The line
is the theoretically expected value, however, the simulation results are fluctuating around it. We attribute
the variation of g, again to the local size distribution function within one subsystem, which is different from
the global distribution function. In the following, the local g, will be used.

4.2.3. Variable density

In Fig. 11, the trace of the fabric tensor (F,,), is plotted against Cvg, from simulations with different
volume fractions and a uniform disperse particle size distribution. The agreement between the data and the
theoretical prediction is reasonable also for smaller densities v < 0.90, as used above. With decreasing
density v, the trace of the fabric tensor also decays, but remains on the identity line. Hence our theoretical
correction factor g, works for bi- and uniform-disperse particle size distribution functions likewise.

In Fig. 12, the probability distribution of the direction of the branch vectors is plotted for different
densities. Like in the bidisperse case, there is no evidence for anisotropy in the packing.

4.3. Coordination number and overlap

In Fig. 13, the coordination number in the center cells is plotted against the density obtained in these
cells. Note that the density in the center cell is somewhat larger than the global density due to the empty
spaces between the wall and those particles contacting it. The larger the number of subsystems and the
smaller the global density, the larger are the fluctuations in both C and v. Even unphysical values C < 4 can
be obtained due to our evaluation procedure that involves also so-called “rattlers”, i.e. particles with no
contacts that do not contribute to the mechanically stable contact-network. The coordination number
rapidly increases from a value C = 4 at the smallest density. However, within the scope of this paper, an
evaluation of the functional behavior is postponed and we do not examine this quantity further.

As the final plot, we present the mean dimensionless overlap as a function of the global density for the
simulations presented above, in Fig. 14. We remark that the typical overlap obtained is only about 2.5% of

v=0.87

(b)

()

(d)

Fig. 12. Polar plot of p(¢) for the orientation of the branch vector for global volume fractions (a) v = 0.85, (b) v =10.87, (c) v = 0.89,
and (d) v = 0.90.
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Fig. 13. Plot of the mean coordination number as function of the density. The different data sets are obtained from one cell and from
four center cells.

0025 | % |

002

- -

|
— 0015 | % -
%)

L 4x4 cells . i
0.005 & 3x3 cells +
2x2 cells A
Ix1 cells O
Q o 1 1 1 1 1 1
0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0091

\%4

Fig. 14. Plot of the dimensionless overlap as a function of the global density with 6/a o (v — v.).

the particle radius for v = 0.91, and that the overlap increases linearly from zero, at the minimal density
v. = 0.84.
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5. Conclusion and discussion

In summary, the trace of the fabric tensor was examined in almost isotropic, disordered arrays of
polydisperse, frictionless particles in static equilibrium, at different densities. The key result is an analytical
expression for the contact number density, i.e. the trace of the fabric tensor. It factorizes into three con-
tributions: (i) the volume fraction (or, with other words, the density), (ii) the mean coordination number (a
function of density), and (iii) a dimensionless correction factor g,, which is only dependent on the particle
size probability distribution function. The theoretical prediction for g, is verified with molecular dynamics
simulations for various size distributions and densities. As long as the distribution is reasonably narrow the
agreement between theory and simulation is reasonable, within the statistical fluctuations. The latter issue
was also addressed in more detail, and a typical deviation of about 1% from the mean is obtained for
averaging volumes containing around 100 particles. Preliminary simulations with anisotropic configura-
tions and frictional particles show that the results still hold within a few percent (for the cases examined,
however, larger differences can be expected for strongly different protocols of preparation of the sample).
Even though friction should reduce the average number of contacts for the same preparation protocol, the
density would also be reduced at the same time. Thus there is hope that our relations still hold as function
of density. In any case, we expect that our results are a starting point for studies involving more realistic
systems and particles.

The trace of the fabric tensor is a quantity that is related to the bulk stiffness of the material, see
(Rothenburg and Selvadurai, 1981; Chang, 1988; Litzel et al., 2000; Kruyt and Rothenburg, 2001; Luding,
2002a). Our theoretical prediction relates it to the first three moments of the size distribution function (in
the case of a sufficiently narrow size distribution), and thus allows to predict a macroscopic material
property based on a microscopic property of the material. The prediction is that, in general, the trace of the
fabric—and with it the bulk stiffness—will increase with g,, a function of the “width” of the size distri-
bution.

Preliminary studies, concerning the trace of the stress tensor for systems with different particle sizes,
(042), show that it contains a lowest order correction factor dependent on the first two moments of f'(a),
ie. (0,,), o« (a2/@® — 1), see also (Luding, 2002b).

Future work, concerns the correction for the fabric and the pressure also for broader polydisperse size
distributions, and for three-dimensions. Furthermore, the presented results should be generalized towards
an-isotropic structures and frictional, cohesive and possibly nonspherical particles.
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